Reg. No.:....

Name:.....

Fourth Semester B.Tech. Degree Examination, April/May 2012 (2008 Scheme) 08.401 : ENGINEERING MATHEMATICS – III (CMPUNERFHB)

Time: 3 Hours Max. Marks: 100

Instructions: Answer all questions from Part A, each question carries four marks and one full question from each Module of Part B each full question carries twenty marks.

PART-A

- 1. Show that $f(z) = \sqrt{|xy|}$ satisfies Cauchy Riemann equations at the origin but not differentiable at origin.
- 2. Show that $f(z) = \log z$ is differentiable except at z = 0 and find its derivative.
- 3. Show that under the transformation $w = z^2$, the first quadrant of the z-plane is mapped onto the upper half of w-plane.
- 4. Evaluate $\int_{c} \text{Re}(z) dz$ where c is the shortest path from 1 + i to 3 + i.
- 5. State Cauchy's integral theorem. Is the converse true? Give an example.
- 6. Evaluate $\int_{c}^{1} \frac{1}{z^2 + 9} dz$ where c is |z 3i| = 4.
- 7. Find the poles and residues of $f(z) = \frac{1 e^{2z}}{z^4}$.

8. Given that $\int_{0}^{\frac{1}{4}} e^{x^2} dx = 0.2553074606$. Find the truncation error if

$$e^{x^2} \cong 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!}$$
.) most $S = |S|$ some circle $|S| = |S|$ some circle $|S| = |S|$.

- 9. Find by Newton-Raphson method the real root of $log_e x cos x = 0$. Correct to 3 places of decimals.
- 10. Use Lagrange's interpolation formula to find y (-2) given

$$x: -1 0 2 3$$

PART-B

MODULE-I

- 11. a) If u and v are harmonic, prove that $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is analytic.
 - b) Find the analytic function f(z) = u + iv if $u + v = \frac{x}{x^2 + y^2}$ given f(1) = 1.
 - c) Find the image of the strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$.
- 12. a) Prove that an analytic function f(z) is independent of \overline{z} . $(z) \in \mathbb{R}$
 - b) Show that e^x (x cos y y sin y) is harmonic. Find the analytic function for which e^x (x cos y y sin y) is the imaginary part.
 - c) Determine the bilinear transformation that sends the points z = 0, -i, 2i into the points $w = 5i, \infty, -\frac{i}{3}$ respectively. Find the invariant points and the image of |z| < 1.

MODULE - II

13.a) Evaluate $\int_{c}^{c} (z^2 + 3z) dz$ along the circle |z| = 2 from (2, 0) to (-2, 0) in the counter clockwise direction. Without integration is it possible to predict the value of the integral for the same circle |z| = 2 from (-2, 0) to (2, 0). Give reasons.

- b) Find the Laurent series expansion of $f(z) = \frac{7z^2 + 9z 18}{z(z+3)(z-3)}$ valid for
 - i) 0 < |z| < 3 ii) |z| > 3
- c) Evaluate $\int_{0}^{\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$.
- 14. a) Evaluate $\int_{C} \frac{e^{z}}{z(1-z)^{3}} dz$ where C is $|z-1| = \frac{1}{2}$.
 - b) Find the residue of $f(z) = \frac{\sin z}{z^4}$ and hence evaluate $\int_{|z|=1}^{\infty} \frac{\sin z}{z^4} dz$.
 - c) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)^3} dx$.

MODULE - III

- 15. a) Solve $x^3 9x + 1 = 0$ for the root lying between 2 and 4 by regula falsi method correct to two decimals.
 - b) Use Newton's interpolation formula to find y(17) given the following table:
 - 12 16 18 10 X:
 - 19 32.5 54 89.5 10 154 **V**:
 - c) Find the approximate value of $\int_{1+\mathbf{y}^2}^{1} dx$ by
 - i) Trapezoidal rule and
 - ii) Simpson's $\frac{1}{3}$ rule. Take h = 0.1.

- 16. a) Find a root of $x^3 x 11 = 0$ that lies between 2 and 3 correct to two decimal places by bisection method.
 - b) Apply Gauss-Seidal method to solve the system of equations

$$10 x_1 - 2x_2 - x_3 - x_4 = 3$$

$$-2x_1 + 10x_2 - x_3 - x_4 = 15$$

$$-x_1 - x_2 + 10x_3 - 2x_4 = 27$$

$$-x_1 - x_2 - 2x_3 + 10x_4 = -9 = 17 - 27 = 0 \text{ erading } 25$$

c) Use Euler method to solve $\frac{dy}{dx} = \frac{y - x}{y + x}$ with initial condition

$$y = 1$$
 at $x = 0$; for $x = 0.1$. Take $h = 0.02$.